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A probabilistic device developed by Anscombe and Woodroofe is
used to obtain a local limit theorem for a class of hitting times
associated with transient one-dimensional random walks. Applications

of this local limit theorem to ruin problems and to nonlinear renewal

theory are given.
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THE ANSCOMBE-WOODROOFE METHOD IN RENEWAL THEORY

Many random walk problems (particularly those arising in
sequential statistical analysis) call for precise information concern-
ing both the hitting time and the hitting place of a half-line. If
{Sn} is a random walk with positive drift u and finite variance 02,
and if T_ = min{n S >a}, then it is well-known that S, -ahas a

a
3/2 oL 0-1/2 has

limiting distribution as a + =, that (-ra -au'l)u
approximately a standard normal distribution as a + @, and that the
two variables in question are asymptotically independent. Sometimes,
however, stricter limiting statements are necessary: for example, a
local 1limit theorem in Ty

Such a theorem was obtained by A. Borovkov ([ 3 ]) under the
assumption that the underlying distribution of the increments in the
random walk be strongly nonlattice and have a finite two-sided Laplace
transform. Borovkov's proof relies heavily on the complex-variable
machinery related to the Wiener-Hopf method for solving integral
equations. Unfortunately, the asymptotic representation for the hit-
ting probabilities is not very explicit (it is not even apparent from

/2 1as a limiting

Borovkov's theorem, for example, that (Ta-au’1)a'1
normal law).

A rather different approach to limit theorems for hitting
times was discovered by F. J. Anscombe ([1 ]) in his study of sequen-
tial estimation procedures, and has recently been exploited by

M. Woodroofe ((14], [15], [16]) in a variety of contexts, all of them




involving the crossing of curved boundaries. The essence of this
method is a conditioned limit theorem for the random walk, which in
turn is derived from a local limit theorem for the density of Sn'

The conditioned limit theorem is then used to obtain unconditional
renewal-type theorems, large deviation probabilities for various hit-
ting times, or results concerning the moments of hitting times.

In the theorems to follow the method of Anscombe and
Woodroofe will be adapted to local limit problems for hitting times.
The usefulness of these local limit theorems will be illustrated in a
very simple derivation of a large deviation theorem generalizing
Cramér's ruin estimates. (To the best of my knowledge no such large
deviation theorem has previously appeared in the literature.) In
contrast to Woodroofe's work, no absolute continuity conditions will
be imposed on the random walk: the only condition needed for the
validity of the theorems is a finit: second moment.

Local limit theorems for hitting times are also valid for a
class of "perturbed" renewal processes. Such processes, introduced
by Lai and Siegmund [ 7 ], are especially pertinent to sequential sta-

tistical analysis.

o




1.

A Renewal Theorem Local in Time

Suppose that F is a nonlattice probability distribution with

mean U > 0 and variance 02 < o, (NOTE: An "arithmetic" distribution

is a distribution whose support is contained in a discrete subgroup

of R; a "lattice" distribution has support contained in a coset of a

discrete subgroup.) Let xl,xz,... be iid from F, and

S
n

= x1 + L ] +xn.

STONE'S THEOREM (Stone [13]): As n + =

A
() & = supp g|<1 *“Pxer

& ICK
ln!i P{Sn—nu el +x} - [I] ¢a(x/n!5)|

-> o L

Here the supremum is taken over all finite intervals ICK of length

|1

.

|_<_1 where K is a compact subset of R; and ¢o(x) 4 (2'rrc72)-;i

e-le 202 .

Let B = max € , k a fixed integer, I a fixed finite
noosh 0

interval, and {an}—a gequence of real numbers. Define

(2

) Fui,1 (@%gseeesdx) = P(X edx),...,X , €dx [5 ea +I} .

THEOREM 1: If

(3) 1m 8 |1|™ exp{(a_-nn)?/200%} = 0 ,

nie

then

ey e R




Y
(4) Fn,k,l — F(dxo) voe F(dxk)

Furthermore, the convergence in (4) is uniform on any set

I= {({an},I)} of pairs such that L*{an},l)e.ﬂ 1 is a bounded subset

of IR, and such that the convergence in (3) is uniform over J.

PROOF: Since

Fn,k,I(dXO""’dxk)
k
= F(dxy) ... F(dx)P{s _, ,€a -j'z.o X+ I}/e{s_ea +1} ,

the theorem is an immediate consequence of Stone's Theorem. /[//
This is the key to establishing the following renewal theorem.

Recall that

T é min{n:S_>a}
a n

THEOREM 2: Let

(8) ng = nglu,a) = an™t + w2 a2 4 o0l
then

9 P(t, =n} ~ o2 gL\ 32 (g2

and

(10) P{t, =ny; S,l,a-agx}

2,, -1 _3/2 -1/2
et /2 07 W (2ma) f(;‘ pfsTo >y}dy/ESTo

~




as a * ©, These relations are valid uniformly for x bounded away
1/2)

from zero and u in any compact subset of IR, provided the o(a

term in the definition of no is uniform

PROOF: Fix u€elR and x€(0,2); let r €N be a large but fixed

number, and let I, = ({(j -1)x/r, jx/r], j=1,...,r. Then

3
(11) P(Ta-no; ST-aix}
r { )
= 351 P{Snoea+1j}l’ ’ra-nolsnoea +1j .

It is quite obvious that

12 1 - P{Sn -5, _g S3x/x, some %, 151._<_n0|8n ea+1j}
0 0 0
gp{ra=noisnoea+1j}
< l-P{Sno~Sno_z < (3-1)x/r, some £, 1_<_2,5nolsnoea+lj} .

In Lemma 2 to follow it will be shown that for each € > 0

there is a kl large enough that

(13) 1im sup max
a0 1<j<r

P{Sno'sno-zix’ some £, no-kl_gzinolsnoeauj} <€ .

Moreover, by the Strong Law there is a k2 large enough that

(14) P{s_<x, some n_>_k2} <€ .

Let k = mx(kl,kz). Since Theorem 1 implies

5

N .
RPN

e T e
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(15) P{Sno-sno_z <a, some £, 1 <8< klsn

cea+1,}
0 h

*P{Slf_a, some %, 1 < & < k}

for each a € (0,%), it follows that

r
(16) T P{sn

ea+1,}1 ‘P{Sgij x/r, some &} - 2€]
=1 o J

< P{‘ta-no; ST-aix}

r
< ¢ P{S_ ea+I }[l—P{Sli(j -1)x/r, some R} +2€] .
=1 o 3

Relation (10) follows easily from this inequality. Stone's Theorem

allows that

2
an  els, ca+1,} - U2 6L U2 oy V2 L ey
0

Lemma 1 to follow states that for all a > 0

1- P{Sz < a, some £ > 1} = P{S_ > alu/Es ;
- - To R

and € > 0 is arbitrary. Thus for large r, the two extreme sides of
the inequality (16) both approximate the expression on the right hand
side of (10).

Let K, be a compact set of R and K, a compact set of (0,).
To establish that the relation (10) is valid uniformly over u t-:l(1 and
chz, it 1is enough to show that there is uniformity in (13), (14),

(15), and (17). Uniformity in these relations follows immediately




from the statements of Lemma 2, the Strong Law, Theorem 1, and
Stone's Theorem, respectively.

To complete the proof of the theorem it suffices to demon~
strate that (9) holds uniformly for u in compact sets, for it will
automatically follow from this and what we have already proved about
(10) that (10) is valid uniformly for x bounded away from zero. In
the proof of (9) we will appeal to the fact that (10) holds uniformly
for x bounded away from zerc and infinity.

Choose € > 0 small, and let A > 0 be large enough that

I [1-FA+3)] <€ .
j=0

By Stone's Theorem there is a constant C > 0 such that for each

interval I of length 1 and all a,

p{s _;eIl< ca® .

0
Now

P{’ta-no; S.-a >A}

ca-dzl}

00
<% P{Xn0>A+z}P{Sno_l

< I [1-F(A+j)]'CaJ5
i=0

< E(:a_k .

We have already shown that




2
P{t_=n,; S_ -a<Al~e " /2 <7"1u3/2(21ra)'1/2 - /A p{s_ >yldy/Es ;
a 0 T, - 0 To TO

since € > 0 is arbitrary, (9) holds. This completes the proof. ///

LEMMA 1: For any random walk with mean y > 0, and for each a > 0,

(18) 1 - P{S <a for some n>1} = P{S_ >al}u/ES
n— = Ty T,

PROOF: This is an exercise in the use of the "Duality Principle" for

random walks (cf. Feller [5 ], Chapter XII). Let

¢ & inf{n>1: s <0}

1 - p{s <a, some n>1}

=f P{min S, >a - y}F(dy)
(@) k>0 "k
= [ L P{min S, =8 >oa-ylp{t==}F(dy)

(0,@) k=0 0<j<k J K

=/ z P{To>k; Sk>a-y}F(dy)P{t=°°}
(a,®@) k=0

P{s_ >alp{t ==}
To

P{STO >a}/E'ro

1>{sT >a}u/ESTO . 1

0

e e — 2




.

LEMMA 2: Let Kl be a compact set of R and Kz a compact set of (0,»).

T S e e g

L M

—

Then under the conditions of Theorem 2,

(19) 1inf 1im sup sup sup max

k>0 aw uel(l xel(2 1<j<r

p{s o-sno"q‘ < x, some &, no-kilinolsnoea+1j} =0 .

LA BN .

PROOF: '"Looking backwards' along sample paths one sees that

P{Sno-sno-lf-x’ some %, no-k_<_9,_§nolsn063+lj}

< P{s; <x, some £, k<f<ny}

. P{Snoea+Ij|Sz<x, some £, kilf_no}/P{Snoea+Ij} .

By Stone's Theorem and the definitions of n, and Ij’

sup sup max [1/P{Sn

uek, xek, 1<j<r 0

€a+1j}] = O(a;i) .

By the Strong Law,

inf sup P{82<x, some £ > k} = 0 .

k>0 xt:l(2

Thus to prove (19) it suffices to show that

(20) sup sup sup max P{S Ea+Ile£-y}-0(a-l’) . }

n
uek,; xek, y<x Oilf_no 0

Relation (20) follows from Chebyshev's Inequality and Stone's

1/4 +1/2

Theorem, quite painlessly. For n, > >a log a, a

* ka2 NPT ), e N - 5
C RSy e, oLy IR TR ™ or ol “0 LR e Ay b . il A




p{sno ea+IJ|sz-y}

< P{Sno-ﬂ >a-yl}

— e e

(no - 2)02/[—y + U -uo u_;2 a!5+ o(ali) ]2

A

-;i) g

= o(a

uniformly for u €K, (provided the o(a%) in the definition of n, =

1/4 +1/2 f

no(u,a) is uniform). On the other hand, £ < a log a implies

n, - % > a/2u (for sufficiently large a and u EKl); Stone's Theorem
implies that
sup P{S_ eI} = 0(n™%
I:|1j]<e "
8o
sup sup sup max P{Sn ea+Ij|SR‘-y} -O(a—si) i
by (]

uek, xeK, y<x 0<f<a

1 loga

Theorem 2 is especially useful in studying large deviation
probabilities for hitting times. As an illustration, we present an
4
extension of Cramér's classical estimates for the one-sided gambler's

ruin problem (cf. Feller [5 ]; also Siegmund [11]).

Let xl,xz. coe

F with a finite Laplace transform in some interval: this distribu-

be 1.1.d. random variables from a distribution

tion will be thought of as a member of an exponential family of

probability distributions {I-'e :0eJ}, 1.e.,

10




Bx-y(0)

Fe(dx) =e F(dx)

0x

e‘p(e) e F(dx) ,

—— e - -

/
R

} v(8)

and J is the largest interval on which the Laplace transform e

is finite. Denote by Ug and og the mean and variance of Fe, so

(22) Hg = (d/d8)y(8)

o? - (@?7a6H)pc0) . |

Note that these simple relations imply that y, 4, and that y(6) 4
0

on {6:u6>0} 4 J, but P(B8) ¥ on {9:u9<0} 4 J_.

THEOREM 3: Suppose F is a nonlattice distribution, and let T, =

min{n:Sn>a}. If 6>0, 6€J, and P(8) > 0, then as a + «

~8a+ [ a/uy 1v(8)

(23) B {r, <alug} ~ e (2ma) " '
. o.gl uglz (1_ e-w(e))'l
. J(‘;" % 1>6{sT >x}dx/EgS

0

If © E:J+ is in the interior of J, and if Y(6) < 0, then as a + =,

-8a+ a/ue +1 Jy(8)

] (24) I’o{.r;/ue <1:a<co} ~ e (2"a)_l,
. 051 uglz (l_el"(e))-l
o  =0x
T hoe Pyls, >x}ax/ES_ .

0 0

11

PR~ 1k
i
,"-M -

RS LI R TR T - I o




Note that 6 > 0, Y(6) > O implies Hg > 0, so the statement

(23) makes sense.

PROOF OF THEOREM 3: For 6 > 0, 8€J, Y(8) > 0,

For [a/ue ]-a 3 <jc< [a/ue J, the approximation

Pols. -a<x|r, =3} ~ J(‘)" PolS. >yldy/ES_

a 0 0
Pe{raaj} ~ (Zvra)';2 051 uglz
hold uniformly by Theorem 2, so
TLa/ug -6(s, -a)+(3-L a/uy 1Hv(6)
z i) e a dp

3]
j'[ a/ue ]_31/3 {Ta'j}

~ % -1 3/2 o -0x
(2ma) Ty Mg fo e Pe{S,r(..)>x}\'lx/EeSTo

{ Mol G-Lang Dveo
e

j-[ a/ue ]‘31/3

12

¢ ) -GST + TY(6)
P it < alul =S e dp
0 'a 0 {Taia/pe} 6
i ~6a + [ a/uy Jv(6)
H N
Lalug 1 -0(s -a)+(3-[ a/ug Dy (0)
. X f e dPe .
! j=0 {Ta=j}
1/




—

The last expression is a geometric series which converges to

(1-eV(0))-1

as a * »©, Since

!
j
re
i

[ a/ug 32/ -6(s, -)+(3-L a/ug DV (o)
L ! e ° dp,
=0 {r =1}

is of smaller order of magnitude than a’k, the proof of (23) is

complete.

The proof of (24) 1is quite similar, but a technical complica-
-06(s_-a)
tion arises: if © < 0 then e T is an unbounded random variable.

We will not reproduce the details of the argument here (however, see

a——

Example 1 of Section 2, where essentially the same problem of uni-

formity occurs); we have included Proposition 1 below to dispose of
uniform integrability difficulties which arise in the use of

Theorem 3. ///

PROPOSITION 1: Suppose g(y) 1s a positive nondecreasing function on |
(0,2), that F is a distribution on R with finite mean it > 0, and |

that |

(25) f: {el0,w) BWF(du+z)dz <o .

Let {Ta 1€l a ER} be any family of stopping times for
9

{o(xl,...,xn)}

Then

n=1,2,... such that if Ta.i = n, then Sp-p 28 < Sn'

S I

13

1 N mr rTgewe = - o eeveemy




(26) sup sup E, g(5, -a) <
iel aceR a,i

If F has a finfite variance, then

e e e
A T
2 e ot

L ] -
(27) sup sup n EF[g(Sn—a), Sn_lﬁaisn] < .
n ateR

Other than the variables T = min{n: S, >a}, many families of

random times are subsumed by this proposition, for example
T = min{n: 5, (Zan)%} ,a>0 .

The condition (25) is not difficult to verify, in many instances of |

interest. If, for example, g(y) = eey, 6 > 0, and

(28) £ snr@y = £ eV ray) <
then }
(29) Jo {efo,=y BWF(du+y)dy

= f(;o del0,) ) pau+y)e™® ay

<y ™% ay de0,) ™ F(du) 1

¥

<o ;

PROOF OF PROPOSITION 1: Let
(30) G(z) = éc(o,m) g(u)F(du +2z) t

for z > 0; since g is nondecreasing, G +. Let




— Gkl T hesiad P Hava. i ciee oie oy o

[ -]

(31) WI) = I p{skexl :
k=0

by the renewal theorem there is a constant C such that
(32) U(I) <C<w
for every interval I of length 1. But

(33) Ep g(ST -a)

a,i

o oo
- ;: Jo 8(WF(du+z) kEO P{Ta,i> K, Skea-dz}

00

< fo G(z)U(a -dz)
oo

< £ G(k+1)U(a-k~1, a-k]
k=0
(-]

< I G(k+l) - ¢C
k=0

< @

by (25).
If F has a finite variance, then by either Stone's Theorem or

the Local Limit Theorem for lattice distributions there is a constant

*
C < » guch that for every interval J of length 1,

i *
sup n” P.{s eJl <cC .

n




(34) EF[g(Sn-a); Sn_lia<5n]

[ ]
< I G6kp {k<a-s
k=0 F n

L Sk+1)

A ok
<n ?cC L 6K . ///

k=0

In deriving the analogue of Theorem 2 for lattice random walks
Stone's Theorem may be replaced by the more well-known local limit
theorem for lattice distributions. Although the argument is the
same, the result is quite different.

Let {Sn} be a random walk with increments {Xj} i.i.d. from F,
which has mean u > 0 and variance 02 < «, Suppose F is supported by
the coset h + 2 , where 0 < h < 1 1s either zero or irrational; and

suppose there is no integer k > 1 such that h + k2 supports F. Let

(35) T =min{n>1:8 >al}
a = n

T = min{n>1: Sn>0}

*
THEOREM 2 : If

1 3/2 _1/2

+ uo u a + o(all2

(36) n )

0 = no(u,a) = ay

and if h = 0, then for x¢ {1,2,... },

(37) P{T.-no; S, -a=x-(a-[al))
a
2
~ e ¥ /2 ot u3/2 (Zﬂa)-l/2 P{ST}_X}/EST

16




and

2
(38) plr_=n )} ~ ™ 12 51 312 (ynay~1/2

as a *©., If h¢ 0, then for xe{1,2,... }

(39) P{Ta-no; STa—a=x-(a-n0h-[a-noh])}

~

2
e U /2 0—1 u3/2 (Zﬂa)-llz (EST)-l

. P{STix- (a-noh— [[a—noh 1}

and
2
(40) p{r,=n)} ~ ™ 12 1312 (3ray1/2 (EsT)'1
xﬁl P{STix- (a-noh- [ § a-~ngh I}

as a + ©, These relations ((37)-(40)) hold uniformly for u in any
compact subset of IR, provided the o(a!!) term in the definition of

n, is uniform.

The surprise is (40): for although (ra-au'l)c'l u3/2 a~1/2

is (asymptotically) normally distributed, the (asymptotic) density of
Ty is not the discretized normal density. However, one may easily
deduce the global limit theorem from (40) by appealing to Weyl's
equidistribution theorem of number theory (see, for example,

Chandrasekharan [ 4 ]).

Now suppose that in addition to having support contained in

h + 7 (and in no coarser lattice) F has a Laplace transform which is

T . OO S - et o —.‘—-“-‘J




e e e e e
S e b

finite in some open interval J containing zero. As before, let

Ix-1(6)

Fy (dx) F(dx) ]

RGO I R )

Mg = f]R x Fy (dx)

2 2
Oy _ (x -uy)” F,(dx)
6 = flR 8 9

J, = {GSJ:ue>0} .

e VP

*
THEOREM 3 : Suppose h = 0. If 6 >0, BeJ, and Y(6) > 0, then as

HORAT

a + » through Z

~8a + [ a/ug Jy(®)

(41) polt, <aug} - e - (2ma)~1/?

. 051 ug/?. (1_e-%b(8))—1

+ I
x=1

|
-0x
e " Pglsp >x}/Ess, . ‘

:
i If 6 €J+ is interior to J and Y(6) < 0, then as a =+ o, t

-8a + [[a/u, + 139 (0) !
(42) Po{a/ue <T, < ®} ~ e 6 . (zﬂa)-l/z i

0—1 +3/2

o Yo (9))-1

(l—ew

a0
: -Bx
3 xEI e Pyls,>x}Es, .

. y 8
‘g AT a5 SN by

AT K €W e



Suppose h ¢ 0, If 6 > 0, 8¢J, and Y(6) > 0, then as a + »

through R, .

-0a + [ a/u, 1y(6)
43) Byl <aug) ~ e ® - (2ma)~1/2 ;

.-l 3/2 g

Tavgd o
. z I Pls,>x-(a-jh-La-jh I}
Jj=1  x=1 !
- exp{-68[x-(a-jh-Ta-jh D] ‘1

+ (- Lafug D@} . 1

If €J+ is interior to J and Y(6) <0, then as a + = through R,

(44) Pofa/ue <1, < ©} ~ e (27a) :

+ o5t a2 rEgsp

(-] ©0

©z I Pylsy>x-(a-gh-Ta-jh D} |

- exp{- 8[x-(a-jh-[a-jh )]

+ 3~ Lalug Du®} .

Although the series in (43) and (44) have a somewhat menacing
aspect, they are "subgeometric': to obtain reasonable approximations

one would need only a small number of terms. ‘




2. Perturbed Renewal Processes

In recent years an extension of the renewal theory for random
walks to a class of "perturbed" random walks has been effected
(principally by M. Woodroofe ([1l4]) and T. L. Lai and D. Siegmund
H ({71, [8])); the germination of this new theory was triggered by the

peculiar needs of sequential amalysis. It is the object of this sec-

tion to derive analogues of Theorem 2 appropriate for the more gen-
eral setting of Lai and Siegmund's papers.

Let {Xi} be iid from a nonlattice distribution F with mean
u > 0, variance 02, and finite third moment, and Sn = xl-f...-+xn

(the need for a third moment stems from the necessity of appealing to

certain refinements of the Central Limit Theorem). Let

(45) Zn = Sn + En

-3
"

= . > .
T, min{n 12 a} ;

here {En} is a sequence of random variables such that En is indepen-

dent of the future O(Xn Certain assumptions on the

Hjﬁﬂzp..).
rate of growth and oscillation of the sequence {En} are necessary to
obtain any results of a renewal-theoretic character: those that fol-

low are of necessity more stringent than those of Lai and Siegmund,

since more refined limit theorems are at stake.

ASSUMPTIONS ON {£_}. There exist constants ne(0,1/4), Be{0,1), vy > 0
n

such that for every € > 0
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e g e e e

it bty e e e e

A P{max | |>rgTTA-B-1} = o(xT/4¥1/2
0<n<r

1/2 +n r~1/4+n/2)

B. P{ max |gn|>r €} = o(

Br<n<r
c. P{I€r|>rl/4+n/2 E}= o(r-l/z)

D. P{  max K3 -1/2

1
L<geer D

&l € =™

r
Roughly speaking, (A) and (B) guarantee that Ta is not very
much smaller than its expectation with any appreciable probability
(see Lemma 3); (C) insures that the normal approximation to the dis-
tribution of Zm is sufficiently sharp; and (D) implies that the pro-
cess {Zn} acts like a random walk for reasonable stretches of time.
Not all interesting processes are ruled out by these assumptions, as

the next result shows.

PROPOSITION 2. Suppose Sn = Y1-+...-+Yn is a p-dimensional random
walk whose increments {Yj} are iid from a distribution with mean
vector Y and finite absolute 22~th moment, for some £ > 2. Let {an}

be a sequence of constants for which max -0, and let

<n 3/ lag - 4|
g RP + R be a function which is C3 in a—heighborhood of u and

satisfies
L
(46) max |g(x)| = O(R")
|x|<r
as R +», 1If
21




z = ng(Sn/n) +a

and

£, =2, - ng(W) - -ou| W)

then {En} satisfies Assumptions (A)-(D), for any ne(0,1/16) and

Be(0,1).

PROOF. The appropriate tool is S. Nagaev's generalization of
Chebyshev's inequality (this is Corollary 2 of [10], a paper which
contains a wealth of information concerning the accuracy of the nor-
mal approximation, including an improvement of the Berry-Esseen
Theorem which will be used later in this section). Nagaev's
Inequality states that if Vl,Vz,... are iid random variables with

zero mean and if Wn =V -+...-+Vn, then

1
m m
(47) PW_>x}<B_ EIVll n/x
for all x > 4{n max(O,log(nm/z_l/K.m Elvllm))}l/2 where

K =1+ (a+l) (m+2) -m

and Bm is an absolute constant depending only on m. Using (47)
(with m=3) in conjunction with Taylor's Theorem, one may easily show
that {En} satisfies Assumption (C).

Assumption (D) is somewhat stickier. Nagaev's Inequality

shows that for each § > 0,

22




(48) P{ max [Sn-nul >né} = o(t—llz)
Br<n<r

and on the complementary event
- 2
49 g =& | <107 G, -l s s - nd
-1 2
- @O+ Gy - Ul g s, - (a +OW]

+ an{lsn/n- u|3+ |sn+k/(n +k) -u|3]
+ o(1)

for some constant a > 0 (this follows from Taylor's Theorem and the

fact that the sequence {an} is slowly varying). The cubic term falls

easily to (47) (with m=4), and

(50) | (Zn)'l<sn ) Is, - nu>

@@+7IE L, - (Ul s s_,, - (n+OW

A

ltem™ - e+ ™ME -l f swls_-ad|

+

2
Iémk—sn-kul v el |Sn/n-1>|

2
+ Gy - Sy -kl ¥ 8D ISy -5, ~kd/2a] .

The first and third terms may be easily disposed of by using (47)
(m=4); (47) also works on the second term, but only after a maximal

inequality has been employed. The proper maximal inequality may be
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stated as follows: 1if Ul’UZ"" are 1id random variables with mean
zero and finite variance, then there is a ¢ > 0 such that for all

€>0,

P{ max (U

+...4+0) > €} < cP{(U, +...4+U) >€} .
1<k<n k - 1 n

1

Assumptions (A) and (B) are relatively easy to verify, using
the standard maximal inequality for L2 reverse martingales, and
Taylor's Theorem. For (A) some caution is necessary since for n
small, P{]Sn—nul >né} need not be small; this is the reason for the
2k-th moment condition and the growth condition on g. Because the
details of the verification are somewhat mundane, they are omitted.

The main result of this section is that the '"local" renewal

theorem generalizes to perturbed random walks,

THEOREM 4. Suppose the sequence {En} satisfies Assumptions 1 and 2,
and that Z =S_+ & , where {Sn} is a random walk from a nonlattice
distribution with mean Yy > 0, variance 02, and finite absolute third

moment. Let

1 011-3/2 a1/2 + o(allz)

(51) n, = no(u,a) = ay 4+ u .
Then
22 -1 372 -1/2
(52) P{Ta-no} ~ e g (27ma)
and
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(53) P{Ta-no; z, -a<x}

T

2
< eu/2 1 312 g -1/2 £ pis,_ >yday/Es
To To

as a + ©, These relations are valid uniformly for u eKl, X eKz,

where K, 1s a compact subset of R and K, c (0,=), 0 ¢ EZ’ provided

1/2

the o(a ) term in the definition of n. is uniform.

0
One could attempt to prove Theorem 4 by following the pattern
established in the proof of Theorem 2; however, many of the technical
details can be sidestepped by incorporating the result of Theorem 2

into the proof. This is accomplished by first conditioning on

e

(54) 5 CICSPRTRTS SUE IR SRR S

1 N 1

where
1 _ a1/2 +n 3

.

n =n(a) = Cap

Because of Assumptions (A) and (B), Ta > nl(a) with preponderant
probability (cf. Lemma 3 to follow); on the other hand, Assumption

(D) guarantees that max |£n- E;n | is small, so conditional on
0 1

n1_<_n§n
Enl, '1‘a is nearly always the same as n, + min{n>1: Sn>a —an}, and

ZT -a is approximately ST -(a- En Y. Thus Theorem 2 should allow
a a 1

for calculation of

zZ, -a<x|3 } .
=""n

(55) P{Ta-no; T )

The remainder of the proof will consist of integrating out

the conditional probability over the o-algebra 8n » 1.e., evaluating
1
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E[P{T, =n; ZT-agxI:inl}] .

The conditional probability (55) is of appreciable size only when Zn
1

is in a certain interval whose length is roughly proportional to

all4'+n/2 (which is in turn proportional to the standard deviation of

8§ =S ). On this interval S_ has (approximately) a density which
o ™M ™

is (approximately) a constant multiple of Lebesgue measure (by
Stone's Local Limit Theorem ; Assumption (C) insures that integrating

out against Sn is not markedly different from integrating out against
1
an).
The strategy of the proof is indicated schematically by

Figure Al.

LEMMA 3. Suppose {Zn}, {Sn}, and {En} satisfy the conditions of
Theorem 4. Let € > 0, b > 0 be fixed real numbers, and suppose Ja is

any interval satisfying

(56) 'Jal < pal/? +1/2
and
(57) (a-x) > €al/2*"
where
x, = sup{x : era} .
Then
(58) P{T,<ny; 2 €J } = o(a~1/4 +n/2y

1
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as a +* ©, This holds uniformly for the family {Ja} of all intervals (

satisfying (56) and (57). t

PROOF. This 1s essentially the same as the proof of Lemma 2: the

perturbation terms {En} are the only complicating factor.

Let

A ;
Is™ {y e R: dist (y,I) <8} ,

for each interval I CIR, and let 1"1, r 1"3 be the events

2’

I, = { max IEnI <a(l-B-v)!

1 0<n<Bn,
I, = { max g | < at/2*n €/2}
a! =
Bnlininl

1/4 +n/2
I, = {linll <a }o.

Then by assumptions (A)-(C) on {En},

-1/4 +n/2

o i e o s o

P{Q \(T AT, NT,)} = o(a y |,
since n, = n,(a) ~ au-l Now
1 1 . !
T, <ny5 Zy Y23 11 0Ty nr,)
c{ min 5 -5 < -ea/2tN2y G e¥0/2
B8 <n<n 1 " ;
n- = 1 ;
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S, € 1) }

1 +al/1o +n/2

U{ max s >a(B+Y); 5_ €(J) } .

0<n<p n 1 4al/4+n/2
—=n
1
The probabilities of the two events on the RHS of this last relation
may be bounded using the Strong Law, Chebyshev's Inequality, and

Stone's Theorem, in much the same fashion as in the proof of

Lemma 2. [///

Lemma 3 will justify conditioning on 8n , effectively allow-
1
ing us to replace Ta by min{n >n1 : Zn >a}. This was the first step

in the strategy; the second was to integrate out over Sn . The next
' 1
1 lemma provides a device for doing so. Recall that

no(u,a) = au-l + a1/20u-3/2

1/2)

‘u + o(a

n (a) = Cap~t-al/2 thy !4
{
|

define

(59) k = k(u,a) = no(u,a) -nl(a) = 31/2 +n_ a1/2 0u'3/2 u+o(a1/2)

LEMMA 4. Let £ : R + IR be a bounded uniformly continuous function

[ -]
such that [ [£(x) |dx <. Let

(60) w(y) = [k-(a-putukl/2

let A < B be any two real numbers (finite); and let {un}, {Bn} be
sequences of constants converging to zero. Then if {Sn}. {En}, and

{z_ } satisfy the hypotheses of Theorem 4,
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B+Bn
(61) J 1 f(w(y))P{Z_ edy]
w(y)=A+a ol
b

B 2
. J f(aydo - e~V 12 12 M2 (5n 4112 -1
w=A

ag a *+ ®©, This holds uniformly for u in a bounded subset of IR,

provided the 0(31/2) term in the definition of no(u,a) is uniform.

PROOF. This is a consequence of Stone's Local Limit Theorem for the
random walk {Sn}, together with Assumption (C). Let Y(:) be the

modulus of continuity of f, i.e.,

P(S) = sup [£Cu) ~£CV)|

u,v: [u-v|<6§
and let PG be the event

r, - {lgn1| <52y

B+ -6
L) n [f(w) -P(8) ] P {Sn € dy; FG}

(y)-A+an+<S 1
B+6n

< J f(w(y)) P {z_ edy; FG}
w(y)=Ata_ ny

B+8_+6
5L " (£ +¥(8)] P {s_ edy; T}
(y)=Ata -6 n

By assumption (C), P{Q\;FGI - 0(3-1/4'+n/2); since f 1s bounded,
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B4+ -6
L "1 [£(@) -¥(®)] P {s_ edy} + o(a~1/4*+n/2,

(y)-A-kln +3 1
1
B8
§L 1 f(u(y)) P {zn € dy}
(y):-Monn 1
1l
B4R +5
if "1 [£(0(y)) -8 ] P {S_ cdy} + o(a 1/4*¥N/2) |
w(y)=ata_ -8 n,
1

The integrals on the extreme sides of the last inequality may be
approximated using Stone's Theorem. Since 8§ > 0 was arbitrary, (61)
follows: the uniformity in u follows directly from the statement of
Stone's Theorem. ///

Recall that the strategy for evaluating P{Ta-no(u.a);

Zp-a<x} called for a careful analysis of

P{Ta-no(u,a); Zp-asx; Ta>n1(a); anel(a,u)}

where 1I(a,u) is some 'critical interval" (see Figure 1). Implemen-

tation of this strategy requires that we bound P{T=n Z.-ac<x;

ob “r-a=>

Zn £ I1(a,u)}; since there is no local limit theorem (or Berry Esseen
1
bound) available (a priori) for the process {Zn}, this is a somewhat

delicate point.

LEMMA 5. Suppose the processes {Sn}, {En}, and {Zn} satisfy the
hypotheses of Theorem 4. Then for bounded sets KCIR, and each

B>4+b,




(62) su sup
1: IITf_b uek

1/4 +n/2

1/2 i
a 1>{zn -n uel; lzn -2 - (ng-nuf>a B}

0 0 0 1

oo
< C(u.O.m3) z
i=0

+ 31/2 P{lgn I >81/10 +n/2}
1

+ al/2 plig_ -€ |>1)
1

0

where
2, 2
8,00 = & 12/ g

Here C(u,o,m3) is a constant depending only on the first three

moirents of Sl' and the supremum is over real intervals I. In addi-

*
tion there are constants Cb K (depending on b,K and on the processes
’

{Sn}. {En}) such that

172 *
(63) sup sup sup a P{z  -njuell < ok

a<e uek I:|[I|<b 0

ke
and for each B < ® there is a constant (‘.B K such that

(2 +b)[¢0(3 +2j(b+1)) +(B-4 +j(b +2))‘3]




(64) 1lim sup sup su
a-w uek I:IITiG

1/2 1/4 +n/2
a'“ Pz -njuel; |z -2 '(no'“]_)ulfal n/2 g,

0 0 1

R EARCINT:

n n

-E | <8}
1 o ™

b2

5%,&'6

for sufficiently small § > 0.

NOTE: The notation SUp .k DAY be somewhat confusing, since u does
not explicitly appear in any of the expressions. However, recall

that n, is defined as an integer such that

1 1/2 _ -3/2

no(u,a) = ay - +a au cu + o(.:-1l/2

)

Implicit in the inequalities (59)-(61) is the assumption that the
1/

o(a 2) term is uniform for uek.

The proof of the lemma will rely on a strengthening of the

Berry-Esseen Theorem due to Nagaev [10].

NAGAEV'S NORMAL APPROXIMATION THEOREM. Let Un =Y +... +Yn where

1

Yl,... are i.1.d. random variables with mean zero, variance 1, and

finite absolute third moment m3. Then

IPfUn ixnllz} - ¥(x)| <Lm n-llz(l + lx|3)_1

3

for every nceIN and xcIR. L is a universal con;tant.
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PROOF OF LEMMA 4, Let

Is = {ye R: dist (y,I) <§}

k =n a.“'/2 +n + ucm_sl2 al/z + o(allz)

0o"™ ~

1

Then

(65) P{z -npuel;|z -2z -k SAEEY e | <2,
0 1 1

0 g"o_En <1

1

2 1/2}

, 1/
< p{sn ~ngU+E €13 [sno- Sn1~ku| >k

B~1; l‘én [ <k
0 1 1

_ . 1/2
=f P{Sk—ku €1, -y; IS, ~ku|>k'“B-1}

. p{sn +£nl—nlu edy; |gn |_<_k1/2}

1 1

-]
< I P{B-1+2j(b+1)5lsk-ku]k
i=0

-1/2 <B ~1+2(j+l) (b+l)}

. P{snl -ngu ext’? 503,100

where for each j, J(j,I) is the union of two intervals whose lengths

do not exceed 4(b+1). By the (usual) Berry-Esseen Theorem there is
*

a constant C (0,m3) such that

1/2 1/2,.1)/2 *
P{Snl~nluek J} < (k My ) (la] +1)c (0,my)

for all intervals J and all a > 0 (and uniformly for u &K, since

k = k(u,a) * « uniformly as a + ®), The probabilities
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-1/2

P{B-1+2j(b+1)§lsk-—ku|k <B-1+2(j+1)(b+1)}

may now be estimated using Nagaev's Theorem to complete the proof of
(62): again, the fact that uecK (bounded) implies that k = k(u,a) 4
uniformly for ueK, so the bound provided by Nagaev's Theorem is

uniform in u.

By Assumptions (C) and (D) on the process {En},

al/? p{lt | >al/4+n/2y |
il

1/2 N
a p{lgno-gnlln} 0

Thus in view of (62) it suffices to show that P{Zn —nou eI;

0
lz -z —lq.||<k1/2 B; I'}=0(a-l/2) in order to prove (63): here
!\0 nl -
r={lg ]<a1/4+n/2}ﬂ{l£ -& | <1}. Now
n - n n -
1 0 1
(66) P{z -nuel;|z -2 -ku|<kl/2B;I‘}
n 0 n n -
0 0 1
1/2
<P{S -nu+f eI ;]S -S_ -ku|<k'“B+1;T}
n, 0 ny +1 n, ng
_ . 1/2
=/ p{s -kuel, -y;|s -kuf<k'“B+1}

- P{S_ +4& -n,pedy;T} .
ny nl 1

*
By the Berry-Esseen Theorem there is a constant C such that
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-1/2

(67) Pls, ~kuel,y -y} < € (|1] +2)k

+a~7

1/

2 * 1/2, 1/2
I’{Sn +E -muek T T} < ¢ (|3 +3)k / /nl/

1 1

for all intervals I and J (on T, IEn /kllzl <1); furthermore,
1

1/2 1/2

{y: I+1-y n[-k B-1,k B+1] # ¢} is an interval of length no

1/2 B+4+|I|. Hence (63) follows from (66) and

greater than 2k
(67). (Uniformity in u again follows from the fact that
k = k(u,a) 4 « uniformly, provided u €X bounded.)

The proof of (64) is quite similar. ///

PROOF OF THEOREM 4., Fix B > 0 and § > 0 (B should be thought of as
being quite large, so that the RHS of (62) is small, and 8§ should be

thought of as smail). Recall the notation

k = k(u,a) = no(u,a) -nl(a) = 31/2 +n + 31/2 Gu_3/2 u+o(al/2) , {
]
and let .
re = {g_| <8it/2)
ol 2
1 !l
G = {n i‘iin lgn-gnllgs} . |
1- =)
Then
(68) P{Ta =n,; Zy, -a<x}
. . 2, o, i
_<_P{Ta ny; Zp-a<x; |zn -z -ku| <Bk™“; Tss Gs} !
0 1 !
3
b
!
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+P{z e(a,a+x]; [z -2 -ku|>Bk1/2}
no no nl

+ P{I‘G}

+ P{GG} .

According to assumptions (C) and (D), the last two probabilities are

o(a~1/2); and P{Z_ e(a,a+x]; |2 -2 -kul >Bk1/2} will be small
"o " ™

in comparison to the first probability if B is large (cf. (62)).

Thus it is the first probability that is of primary interest.

Begin with the inequality

” P{T =ny; §<z

y=a-ki-Bk “+x

a-ku+Bk;i-x
@ | :

-a<x; GGIZn =y; T>n1;I‘6}
1

. P{Zn edy; T> nl;I‘é}

1
. /2, .,
gv{Ta=n0, Zp-as<x; |zn -2 -ku| <Bk ’PG’GS}
0 1
fa-kLH-Bk%-Px l
< P{T =n ;6<2Z -a<x;G.|Z2 =y; T>n,;T}
y-a-ku—Bk%-x a o0 T 8 n; 1’78

. P{an edy; T> n; PG}

+ p{a<z <a+86; IZ -7 --k]\J|<B1<1/2
n,— n n -

;T3 6. .
0 0 1 §* 8
It follows from (64) that if § > 0 is small, then P{a <z <a+$;
0
-zn -kulinllz; 1'6; GG} is small compared to the integrals on

1] 1
the extreme sides of the inequality (69) (recall that kllz ~alM +n/2

1z,
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[ and that u is restricted to the bounded set K). Thus the bulk of the

argument consists of approximating the integrals in (69).

Theorem 2 is the key to evaluating the conditional
probabilities: the reduction to the framework of an unperturbed

process is provided by the obvious inequalities

(70) P{Ta n, =k; S_-a+y +8 e (28,x]} ° 1{1“6; T, >n }

R R 1

<P{T =ng; §<2-agx GGIznl= y3 T, >np3 Tg) - T T, >ngd

T

< p{t =n_-n
< a-y

0~ 0y =k ST-a+y§_x+6} * Mg T >0k

where T 4 min{j >1 :S, >b}. Since k ~31/2 *N 4 @ Theorem 2 provides

b 3

asymptotic approximations to the probabilities on the extreme sides

/2 -x<y<a-ku +Bkl/2 +x, these

of (70); moreover, since a -ku -Bkl
approximations are uniform on the range of integration. Thus for

large a,

2,2
(71) e 0 7/207 -1 u(2wk)—1/2[f2xs p{s_ >slas/Es_ - 6]
0 0

. l{I'G; T, >n1}

; §<z —as<x; calznl-y; T >ny; Tl

. I{FG; T >n }

1

2,, 2
< e 9(NT/207 -1 u(z“k)'l/z[,r(;‘+6 P{s_ >slds/ES_ +8]
0 0

. 1{1"6; T, >n1}
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|
|

where

!

(72) o(y) = [k- (a-yutpe? |

»
for all w = w(y) such that we(~B- xk_llz, B+x k-llz]. *

Combining (69) and (71) gives

-~

|
- l
B-xk 2 2
(73) I -y e 0 /20" 5y edy; Tg3 T >n1}
w(y)=-B+xk ™ a

. (z1r1<)’l/2 o'lu- [fzxa P{sT >s.}ds/EsT -6)
0 0

. . - 172, ..
< P{T =ny; Zp-az<x; |zno an-kulin 3 Ggs Tl

-k
. JB')-xk e—w(y)2/202

< P{Z €edy; I'y; T >n,}
o (y)= ~B-xk 2 n §' "a

1

. (zmc)‘l/2 o'lu- [f(;""6 P{sT >s}ds/EST +8)
0 0

+Pla<z <a+d; |z -z -ku[<Bk1/2; I'.; G}
n,— n, oy - §* 8

Recall that P{PG} = o(a—llz), and that

P{T >n,; Z -a+kue[-Bk1/2-x, Bk1/2+x]}
a 1 n,

- 0(3-1/4 +n/2

)

= o((k/a)}’?)
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(by Lemma 3; note that for u €K bounded, k = k(u,a) ~ a]‘/2 +n

uniformly, so (57) holds). Consequently, the measures

P{anedy; Tss Ta>nl}

may be replaced by 1’{2n €dy}. Lemma 4 now applies; thus
1
for large a

2,, 2 2
-B

X
Uza P{STO >s}ds/EsTo -26]

< =n : . . .
p{T n,; ZT a<x; |2 Z kuI < Bk 3 GS’ r

< }
0 1

$

2 2 2
< [J'_BB W /20 doo/(21r)]'/2 o] - 113/2(2'n.—=1)-1/2 /2 41

x+4
[f0 P{sTO > s}ds/EsTo +28]

+Pla<z <a+8; |2 -z -ku| <3kt Tg; G5}
~ng~ n, - 8

Letting § + 0 and then B 4+ » proves (53).

A careful examination of the argument will reveal that (53)
holds uniformly for ueK and x €K', where K is a bounded subset of IR
and K' is a compact subset of (0,2). The proof of (52) is all that
remains: it will be accomplished by the same device as the proof of

(9) in Theorem 2. Choose € > 0; let x be large enough that
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)‘: p(sTo >y}dy/15sTO <e

I pP{x,>x+j-1}<e€ .
3=0 g

For sufficiently large a,

2
P{Ta-no; Z.-a <x} = eV /2 o1 113/2(217511)‘"1/2

. [f(;‘ PfSTo >y}dy/EST0 te) ,

and by (63) of Lemma 5

*

1/2
-(ny-Duel} < €y x

8UPL, |1|<2 @ P{Zn

0-1
provided u €K, a bounded subset of IR, By assumption (D),

1/2 !
a p{i -¢ |>1} <€ .
n, no—l

Since

P{Ta-“o; Z.-a>x}

T
< I p{x,>x+j+1lpla-23>z >a-23-2} +P{|¢ ‘-F, [y,
j=0 1 n, n, n,

it follows that

2
P(T_ =ng} = e 12 =1 312 500y~ 2() 4 2¢] & E(C;'K'Pl)a—l/z

uniformly for u€K. Since € > O was arbitrary, (52) follows. Thiz

completes the proof of the Theorem. ///




EXAMPLE. Suppose that Y,,Y,,... are i.i.d.n(W,1), U = z? Y,, and

(75) T = min{n:U2>2an} .
a n

1/2

Let t > 0 be fixed; if u > (2/t) » then

-1/2 e_a[utl/z-/flz /2

(76) PU{T >at} ~ (2ma) (Zt)_3

1/2)x

-l e(H-(2/%) P (v >xlax/E

(2¢)
-1/2 2 -1
1 - eH(20) -u"/2)

-1/2

- expl(Lat +1 ] -ar) - 2y~ 2 _y%/2)3

as a > »,

The probability in (76) has some importance in statistics in
that it is the Type II error probability for a '"repeated xz-test."
The approximation given above was obtained earlier by Siegmund [12]
in a somewhat different form. Verifying that the two forms are

equivalent is a routine exercise in the use of Lemma 1.
PROOF OF (88). By the fundamental identity of sequential analysis,

(u-(z/t)l/z)UT+'r(c'1 -u2/2)

(77) P {T>at} = f e dp i
H {T>at} (2/¢)
=1 emlu- @0 - @an’D)
{T>at}
v exp{T((1/t)-w2/2))+(2aD) Y 2 (u-(2/t) /2y 1ap

(/0%




Now {T >at} = {at <T<at +al/3} U {at +al3 <1}, We winl proceed by

evaluating the integral on the event {at <T<at +a1/3}, and then
1/3

showing that the integral on {at +a <T} is of smaller order of '

magnitude. :

On {at <T<at +al/3y, |

[2am Y2 - a2e)? - (1-at) 20)"V2| < ca71/3

for some constant C not depending on a. Thus

s 1 13, el @ - 2ant/?)
at<T<at+a

exp{T((1/¢) - W2/2)) +2an) 2@ - (271) Y/ 2y}

« dP
(2/t)%

[8:"’81/3 :n

~ z J exp{(u - (2/t)
n=[at+1 ] {T=n}

1/2 1/2

)(UT -(2aT) "' %)}

exp{(T - at) (n(2t) M2 - u?/2)} §

exp{-a[pt:l/2 - /2_]2/2}dP - i
(2/¢) -

Next we deduce from Theorem 5 that for at < n < at + 31/3

79 P {T=n; v -(2aD2< 0 ‘
(2/t) !
-1/2 =2,...-1/2
~ (27ma) t™4(2t) X {u. >y}
0 "(ay™® o
- dy/E U .
(Zt)-l’ T »'




The relevant nonlinear process in this problem is
2= U3f2n
n n

1/2

- @/v) + _-n/0' 3 @0l?

+ @ -n(2/6)H %/

with

1/2 1/2

s, = (2/t) (Un—n(Zt)’ )

g = W -n2/0)H%m

That the conditions of Theorem 5 are satisfied follows from
Proposition 2, so

(80) P {T=n; 2 -a<x}

(2/0)% T
-1/2 =2 -1/2 x
~ (2ma) t “(2t) P {s_ >y}dy/E S

i 0 ")t o 2/e)% To
E - (Zma)'l/2 t-2(2t)-1/2%x P ;’{(Z/t)ll2 >y}
¥ (2t) o

cayre @ity

(2t) To
But

-a= Ui/ZT - a

1/2

-(uT-(2ar)1/2)(uT/zr+(a/2r) )y




for at < T < at + a1/3, l(a/2T)1/2- (2t)-1/2| < (2&12/3 tz)-l, and

furthermore for any € > 0, p > 0, P ;,{IUT/ZT"(Z")-I/ZI >¢} =
(2/t)

o(a™® (by any one of a host of large deviation theorems). Therefore

(79) follows from (80).
Proposition 1 implies that the family of random variables

8 (U, -(2aTa)1/2)
3, = 81/2 e a I{Taan >at}

is uniformly integrable with respect to any of the measures PT\’

n > 0. Consequently, we may sum the geometric series in (78) to

; obtain
61 f 13, el - @YD - 2an /)
{at<T<at+a
exp{T((1/t) - 12/2)) +(2am M 21 - (2/6) %)}
« dp
(2/t)?
~ exp{—a[ul:]'/2 -/2-]2/2}(2T|’8)-1/2 tnz(Zt)‘-ll2
g e(u‘(zlt)llz)x P {u_ >x}
0 o™ T
-1/2 2
. dX/E -;i U (1 _e(u(Zt) -Uu /2))‘1
@™t T
- exp{(Lat +1 J -at)(u2e) Y2 _u2y)) .
To see that [ 1/3 is of smaller order of magnitude,
{at+a _<_T}
note that for n > at + 31/3 the sequence
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/ /

aC(1/t) - W2/2)) +(2an) 2 - (276)Y?) 1s decreasing in n. Thus

! 1/3 < exp{-(a-+81/3/t)[ut1/2— VZ12/2)
{at+a™ ~ < T}
B el @0 - @ant’?)
(2/¢)
Proposition 1 guarantees that E i expl(u —(2/t)1/2)(UT-(ZaT)l/z)}

(2/t)
is bounded as a + ®, This completes the proof of (76). ///

There is a useful generalization of Theorem 4 for vector-
valued random walks. Let YI’YZ"" be 1.1.d. random vectors in nﬁ
from a distribution with mean vector u and covariance matrix I, and
let U =Y, +...+Y . Suppose {En} is a sequence of random variables
such that for each n, En is independent of the future

o(Y Define

n+1’Yn+2"" ).

(1
(82) Zn = oun + Cn, g >0

T=T =min{n>1:2 >a}
a — n

(here y(i) denotes the i-th coordinate of the vector y).

THEOREM 5. Suppose u(l) - EYil) > 0, Y{l) has a (marginal) non-

lattice distribution, and Yl has a finite absolute fourth moment. If

the sequence {En] satisfies assumptions (A)-(D), then

1/

(83) PIT_=n,(u,a); 2 -a<x; Z(UT'Tu) €A

~ C(A,u)(u(l))3/2 ol/2 a71/2 f(;‘ P{s_

>s}da/Es1
0 0

and

v e e
RTINS AP




-1/2 1)y3/2 1/2 -1/2

(v, - Tu) €A} ~ C(A,u) (1

FT (84) P{Ta-no(u,a); T

where

ik o i imidn L

2
85) c(Au) = (2m)y Y2 . o S ML PN CO RN C)
{yeA;y" " =u}

s =0yl ;'-j

n ;
3

1. = min{n>1:5_ >0}

0 - n :
B

n - no(u’a) = ao-l(u(l))'l_uo‘l/z(u(l))-3/2 31/2

/2

+ o(a1 )

Here A is any bounded polyhedron in IRd for which C(A,u) # 0.
Relations (83) and (84) hold uniformly for x bounded away from zero,

and u in any bounded set KCIR such that

inf C(A,u) > 0
uck

Note that the hypotheses do not require the vector ‘I1 to have

a nonlattice distribution in the usual sense: only the first coordi-

il) need be nonlattice.

nate Y
The proof of the theorem is quite similar to that of
Theorem 4. The necessary modifications are really very minor.
First, since Yl has a finite absolute fourth moment, the sequence
{n-I/Z(Un-nu)} satisfies assumption (D) for every ne (0,1/4) (i.e.,

/2

)

P{ mxwln'llz(un—nu) - (n+k)'1/2(un+k - (nH)u) | > €} = o(x!

1<k<r




for every € > 0); consequently

. . o-1/2
P{Ta=no, Zo-a<x; T (UT-Tu) €A}
N
-n - . qol/2
P{T, =ny; Zp-a<x; ng (Unl—nlu)eA}
1

vhere n, = Lap -—al/2'+r]] as before. The latter probability may

be evaluated by conditioning on 3; and proceeding as in the preced-
1

ing theorem, with one change: namely, Lemma 4 must be altered to

allow evaluation of

n ~1/2

1 f(w(y))P{Z_ edy; n (U -n.u) eAl
W(y)=Ato_ ny 1 np 1
1

JB+B

This is very easily accomplished by using the full force of Stone's

multidimensional local limit theorem (Theorem 1 of [13]), and gives

the result
B+8
j n f(m(y))P{Zn € dy; nIllz(Un -nlu)e:A}
m(y)=Aﬁan 1 1

1

~ c(a,u) (/ay 2 (D) ygy1/2 B

A f(w)dw

The rest of the argument is the same. ///

The lattice cases are not nearly so pleasant. Even global
limit theorems for the joint distribution of T and ZT-a reflect the
dependence of the random walk {Sn} and the perturbation terms &

(cf. [9]); local theorems will reflect it even more clearly.
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Let Y,,Y be i.i.d. random vectors in le from a dis- '

12 Ygsnee

tribution with mean vector U and covariance matrix 32, and let

Un = Y1+... +Yn' Let Q: IRd + R be a quadratic form, i.e.,

(86) Qx) = x© Mx

for some symmetric matrix M; let {En} be a sequence of random vari-
ables satisfying Assumptions (A)-(D) such that each En is independent

of the future g(Y ), and such that for each €>0

T EERE

-1/2

(87) P{lanl>e}=o(n )

and let {an} be a sequence of constants satisfying

max o |an-an+k| + 0. Define
1<k<n
_ (D _ -1/2
(88) Zn = Un + Q (Un nu)n + En + a
T=T =min{n>1:2 >a}
a = n

and let r be a constant, 0 < r < 1. Denote by 0% the variance of

(1)

k)

(thus 02 = 311).

THEOREM 6. Suppose u(l) = EY](_l) >0, Yil) has an arithmetic distribu-

tion of span 1 (i.e, P{Yil) ez} =1), and Y, has a finite absolute

fourth moment. Let f: [0,2) + R be a bounded continuous function.

Then as a + «© through r + 2 ,

I3
-y

L e RRN el e e R A cho M 50 o VN3




89 %2 Bz, -a)1{T, =0y Wy -mT 2 en)

a

- @ 2am 2 @er 72Dy
0

i
- I I £(3+[(Qly) +a_ -r)mod 1))
{y:y(l)=u0;y€A} [:'i=0 "o
. P{U(l) > j+1}]
. 2
0
Ly o @,
for
(90) ny = ny(u,a) = a1t _ w32, o(al’?
To = min{n>1 D 5 )
- n

and A any bounded polyhedron in IRd. If instead of being arithmetic

Yil) is supported by the lattice h + Z for some irrational he (0,1),

then as a + ® through r + %,
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(o)) al/2 EE(Zy, -a)l{T =ng; (Uy- Tu),r-llz eal
a

- @®)322m ™2 ger M2 (D)1
0

)

T £f(J+[Q(y) +a +n.h ~rlmod 1)
{y:y(l)=uo;y€A L n 0

=0 0

. P{Uiz) > j+[Qy) +ano+n0h—r]mod 1}:[

T¢-1 T
ey 7y 2 dy(z) ...dy(d) +0

The relations (89) and (91) are valid uniformly for u in any bounded

subset of IR.

The proof of Theorem 6 will be omitted.
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3. Remarks

Professor Siegmund has pointed out that the various local
theorems derived in sections 1 and 2 may be used to obtain large
deviations theorems of the Bahadur-Ranga Rao type (cf. [2]) for
stopped sums, provided the increments have finite two-sided Laplace

transform. For example, precise asymptotic expressions for

P{sTa - T,(EX;) > € ra}

and
P{sT - T, (EX)) >€Ta} ,
a
where
T =min{n:S =X  +...+X >a}
a n 1 n
and

'1’a = min{n : S, >v2a(c +n)}

are available for {Xi} i.1.d. n(u,1), exponential, uniform (0,1),
etc., for all € > 0. The derivations are so simple that they are
left for the amusement of the reader.

The primary impetus for this work was a desire to obtain
asymptotic approximations for the Type II error probabilities of
repeated significance tests in multiparameter exponential families.

These results (which use Theorems 5 and 6) will appear elsewhere.
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